Total Profit

A company finds that the marginal profit, in dollars, from drilling a well that is $$x$$ feet deep is given by

$P^\prime(x) = \sqrt[5]{x}$ Find the profit when a well 250 ft deep is drilled.

import sympy as sp
from sympy.abc import x
import matplotlib.pyplot as plt
import numpy as np

marginal_profit = sp.root(x, 5)
marginal_profit
## x**(1/5)
profit = sp.integrate(marginal_profit, x)
profit
## 5*x**(6/5)/6
p = sp.lambdify(x, profit)
p(250)
## 628.5600350567877
sp.integrate(marginal_profit, (x, 0, 250)).evalf()
## 628.560035056788
x_values = np.linspace(0, 300)

plt.plot(x_values, p(x_values))
plt.fill_between(x_values, p(x_values), where=[x <= 250 for x in x_values], color="green", alpha=0.3)

Increasing Total Profit

Laso Industries finds that the marginal profit, in dollars from the sale of $$x$$ digital control boards is given by

$P^\prime(x) = 2.6x^{0.1}$ A customer orders 1200 digital control boards, and later increases the order to 1500. Find the extra profit resulting from the increase in order size.

marginal_profit = (2.6 * x)**0.1

profit = sp.integrate(marginal_profit, x)
profit
## 1.00024099373274*x**1.1
second_purchase = sp.integrate(marginal_profit, (x, 0, 1500))
second_purchase
## 3117.48975261839
first_purchase = sp.integrate(marginal_profit, (x, 0, 1200))
first_purchase
## 2438.95630774585
extra_profit = second_purchase - first_purchase
extra_profit
## 678.533444872540
x_values = np.linspace(0, 2000)

p = sp.lambdify(x, profit)
plt.plot(x_values, p(x_values))
plt.fill_between(x_values, p(x_values), where=[x <= 1200 for x in x_values], color="green", alpha=0.3)
plt.fill_between(x_values, p(x_values), where=[(x <= 1500) and (x > 1200) for x in x_values], color="red", alpha=0.3)

Accumulated Sales

Ragss, Ltd. estimates that its sales will grow continuously at a rate given by

$S^\prime(t) = 10e^t$ where $$S^\prime(t)$$ is the rate at which sales are increasing, in dollars per day, on day $$t$$.

• Find the accumulated sales for the first 5 days.
• Find the sales from the 2nd day through the 5th day.
from math import e
from sympy.abc import t

marginal_sales = (10 * e)**t
marginal_sales
## 27.1828182845905**t
sales = sp.integrate(marginal_sales, t)
sales
## 0.302793106564114*27.1828182845905**t
sp.integrate(marginal_sales, (t, 0, 5)).evalf()
## 4493847.84717322
sp.integrate(marginal_sales, (t, 2, 5)).evalf()
## 4493624.41444125